If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15t^2-4t+3=0
a = -15; b = -4; c = +3;
Δ = b2-4ac
Δ = -42-4·(-15)·3
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-14}{2*-15}=\frac{-10}{-30} =1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+14}{2*-15}=\frac{18}{-30} =-3/5 $
| -k+8=-10k−10 | | 2(x+4)=145 | | r/15=-28 | | 14,542-e=4,667 | | 1/2+2x/3=13/6 | | 7x+5=13+3x | | 4x+5=63 | | 5x-28=x-20 | | 668=2x+4/3 | | 4(n+8)=96 | | 53=y+33 | | k+-72=-28 | | 6(-2+n)=-48 | | 6x-45=x-50 | | d+74=86 | | -74=5r+1 | | 10x-90=x+36 | | 8(k-6)=-32 | | 10+56.45x=58.95x | | 3(x–6)=18 | | 247-x=99 | | 7x+48=x-6 | | 4(4-17x)+17(x-x+x)=33/3x | | 6y4+3y4=9y8 | | -8x+4+14x=2+5-1+2x+4x | | 2x-5x2=0 | | -8(-10+n)=160 | | 2(x-3)+4x=-3(4x-2)-13 | | 279=157-w | | Y=6x;(1,6) | | 15x+5=3x+5 | | 9x+6(20)=450 |